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THE HOLE SPECTRAL FUNCTION AND THE RELATIONSHIP
BETWEEN OVERLAP FUNCTIONS, NATURAL ORBITALS

AND THE ONE-BODY DENSITY MATRIX IN NUCLEI!

A.N. Antonov M V. Stmtsov M.K.Gaidarov* )
S.S. Dtmttrova P.E. Hodgson3

A method to calculated the hole spectral function in the discrete part of the spectrum is
suggested within the natural orbital representation of the one-body density matrix of A-nucleon
system using its relationship with the overlap functions of the eigenstates in the (A — 1)-
nucleon system.

' The investigation has been performed at INRNE (Bulgaria) in collaboration with Bogoliu-
bov Laboratory of Theoretical Physics, JINR.
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Mex1y GYHKUMAMH NEPEeKPBITHA, HATYPAIbHBIMH opbuTansMn
H OJJHOYACTHYHOH MaTpHIeH IUIOTHOCTH sijep
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Ipeanoxen meToa WA BBIMHCICHHA ABIPOYHON CHEKTPATLHOM YHKIHMH VI8 TUCKDETHON
4acTH cnektpa. Mcrosbiyercs npeactarneHue HaTypaibHbIX OpOMTAICH ONHOYACTHYHOMN MaT-
PHLE! IVIOTHOCTH A-HYKJIOHHOMN CHCTEMBI H €€ CBS3b C (PYHKUMAMH NEPEKPHTHI 114 COCTOS Uik
(A — 1)-HyKJIOHHOTO sapa.

Pa6ora seinonnena 8 HSIUSID (Bosrapus) B COTPYIHHYECTBE C JTa6opatopueii TeopeTHuec-
Ko# ¢usuku uM.H.H.Boronw6osa OUSIH.

1. Introduction

The cross-section of direct nucleon removal processes is determined by the spectral
function which contains the information on the nuclear structure and is interpreted as the
probability for the removal of a nuclecn with given momentum and energy from the target
nucleus with A nucleons [1—16]. In particular, in the plane-wave impulse approximation
the cross-section for the direct knock-out process is proportional to the diagonal element
S (k, k, E)= S (k, E) of the hole spectral function (or matrix) in the momentum repre-
sentation:
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A
S (k, K; E) = ( ¥ Ja*'(k) 8 (E+ H - E]) a®) ¥, ), ¢))
where I‘}’O) is the ground state wave function of the target nucleus with A nucleons,

a+(k') and a(k) are creation and annihilation operators for a nucleon with momentum k’ and
k, respectively, H is the Hamiltonian of the system with (A — 1)-nucleons and E AO is the

ground state energy of the target nucleus. If the lattgr has a total spin and parity J T =07,
then introducing a complete set of eigenstates of H for the system of (A — 1)-nucleons

I‘{’f) (where the state I‘Pf) is characterized by the energy Ef with both discrete and con-

tinuous values and by other discrete and continuous quantum numbers) the hole spectral
function can be written in the form:

S (k, K, E) = (¥ la" (N, ) (¥, la(k)¥ ) 8 (E + E,~ E 9, 2)
= q>f‘ (&) @, (k) 8 (E + E, ~ E)), 3)

where
<1>f k) =¢( ‘Pf lak)! ‘¥, ) 1Y)

is the overlap function in the momentum representation {17—19].

The methods used to calculated the spectral function are reviewed, e.g., in [7,14,16].
The use of the independent-particle shell model (when the overlap function (4) is equal to
the single-particle wave function of the occupied state) cannot explain the fragmentation or
spreading of the hole strength. This is because, due to the residual interaction, the hole state
in the target nucleus is not an eigenstate of the (A — 1)-nucleon system and its strength is
distributed over several states of the final system. The structure of the spectral function has
been studied in the framework of the Green function method [1,20]. The detailed analyses
have been carried out by expanding the mass operator into a perturbation series [1,3,4,
20,21]. Calculations using continuum shell model with residual interactions were given in
[5,22]. The nucleon-nucleon correlation effects on the spectral functions were studied with
the Green function method in [23—27,13]. It was shown that the overlap functions can be
determined by a Schrdinger type equation in the discrete [8,12] and continuous [12] spect-
rum of the Hamiltonian for the (A — 1)-body residual nucleus. The deep-hole nuclear levels
and their large widths established from (e, ¢’, p) and (p, 2p) reactions have been considered
within the many-body field theory without any model approaches in {26]. The Hartree-Fock
method using Skyrme forces has been applied to calculate the proton hole-spectral func-
tion in [28].

In this work we use the natural orbital representation of the one-body density matrix
(OBDM) in A-nucleon system [29]. In this representation the OBDM is diagonalized by the
so-called natural orbitals (NO) which form a complete orthonormal set of functions. An
expansion of the overlap functions (4) in the basis of the natural orbitals is used. We
suggest a method to calculate the hole spectral functions using essentially the NO and
overlap functions and their relationship with the OBDM. The following two reasons can
justify the use of the method:

1) Recently the diagonalization of the realistic one-body density matrix of the cor-
related nuclear ground state obtained by various correlation methods [16], such as the
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Jastrow method [30-—32], as well as the generator coordinate method [16,33,34] and the
coherent density fluctuation model [16,34,35] gave reliable information on the natural orbi-
tals and occupation numbers in nuclei. These quantities correspond to the realistic be-
haviour of nuclear characteristics which are sensitive to the short-range . nucleon-nucleon
correlations, such as the nucleon and cluster momentum distributions, the mean kinetic and
removal energies, radii and others. The natural orbitals in nuclei, as well as those in other

fermion systems, such as *He liquid drops [36], are strongly localized and quite different
from the overlap functions and from the mean-field type orbitals [30,34,36,37]. Thus, it is
of importance to apply the natural orbitals corresponding to realistic OBDM obtained in
correlation theoretical methods to calculate the hole spectral function S (k, k', E).

2) The basic quantity which is necessary to calculate the spectral function (3) is the
overlap function (4). We show in this paper that the hole spectral function in the discrete
part of the spectrum can be calculated by using the general relationship [37] which connects
the asymptotic behaviour of the one-body density matrix with the overlap functions of the
(A — 1)-particle system eigenstates. This relationship is of general importance because it
enables one to obtain quantities connected with the bound eigenstates of the (A — 1)-particle
system (such as overlap functions, spectroscopic factors and separation energies) by means
of the exact OBDM (or by a realistic one obtained in a given correlation method) of the
ground state of the A-particle system. In this way, the hole spectral function in the discrete
part of the spectrum can be, in principle, calculated on the basis of the OBDM of the
A-particle system.

In Section 2 we introduce the necessary quantities which are used in the theoretical
method to calculate the hole spectral function. The method is given in Section 3.

2. The Hole Spectral Function
and the Natural Orbital Representation in Nuclei

The one-body density matrix (OBDM) of the ground state l‘-PO » of the A-nucleon sys-

tem has the form
P (x, x) = (¥, la’®) a(x) ¥, ), ©)

where x = {rot} labels spatial, spin and isospin coordinates and a*(x), a(x’) are the creation
and annihilation operators.

The natural orbitals (NO) (pa(x) are defined [29] as the complete orthonormal set of

single-particle wave functions which diagonalize the OBDM:

p(xX)= 2, N o) o). (6)

a
The eigenvalues N, (O SN <1, 2 N_ = A) are the natural occupation numbers. We note
a

that the sum (6) is over the discrete states determined by the finite-range NO (pa(k).
The OBDM (5) can be presented also in the form:
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pex=Y o'0 e w, ™

f
where d>f x) =( ‘Pf la(x)l‘PO ) is the overlap function in the coordinate representation.
The overlap functions can be expanded in the basis of the natural orbitals (e.g., in
momentum space):

@ k)= (9P 0,k ®)

The hole spectral function is then given by the expression:

SkK.E=Y ¢0) 0,0 ¥ (©)0,)(0)0)5(E+E-E)=
ab f
=Y, 0.K) o,k 5_,(E), ©)
ab

where
sp@=X (9,10, (0,0,)8 E+E,~ED, (10)

. f
The quantity (for which different notations exist, e.g., [14,15]):

_ocl/2 _
0,,=5.72=(9,®,) (11)

from (8) and (9) is the amplitude for the contribution of the orbital a to the overlap function
for the eigenstate I‘Pf ). We mention that the quantity (11) determines both the spectroscopic

factor of the state I‘Pf) [19]

{7 =) =F 1, =35, =T (o) @) (12)

a

and the occupation probability of the orbital a:

N = X leaJJ2 = X Sor= j, K (pald>f)12. (13)
s f f

In general, for a given orbital a, only a limited subset of states f of the residwal nucleus
contribute to the sums (10) and (13).

The function S ,(E) (given by Eq.(10) and often called also «spectral function») can be
rewritten [5] introducing the different states I‘Yf ) of the residual nucleus: i) the bound states

I‘I’E o Y with energy E, and degeneracy quantum number o, and ii) the continuum states
V‘ .

" c ) with energy Ef and the channel index ¢ which specifies the channel where there is
»

an incoming wave (all other channels contain only outgoing waves), as well as all dege-
neracies like spin projections, etc. Then Eq.(10) becomes:

SHB =Y (D o) (o) 18E+E ~ED)+

v, a
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+y (@p_ ;o 1o, Y (9,0 _ 0 )8 (EAO—E/;fq ~E) =
A 4 f A ¢

[

_cds c.s.

= Sab (E) + Sab (E), (14)
where (I>Wx and (I)E . are the overlap functions associated with the bound and continuum

o

eigenstates of the residual nucleus and EZ’_’I is the threshold for particle decay of this
nucleus. If the latter is a nucleon threshold, then E A’ﬁ; =E A0-2’ where E A0—2 is the ground-
state energy of the nucleus with A — 2 nucleons [5]. The hole-spectral function (14) con-
tains two parts: i) the spectral function in the discrete part of the spectrum Sa‘;s' (E), and ii)

the spectral function in the continuum of the hole spectrum Sacb's‘ () with ESE AO -E A0—2'

3. The Theoretical Method

The hole spectral function (Eqs. (9) and (14)) is essentially connected with the natural

.orbitals {¢,} and the overlap functions CDf and their relationship with the OBDM. Firstly,

we shall outline briefly this relationship.
In the case of spherical symmetry the overlap functions have the form:

o ()= o (1 7, @, 0), (15)

where (Df(qu) (r) is the radial part, Y jim (€2, o) is the spin-angular function, ¢ denotes the

nature (proton and neutron) of the overlap function and /, j are angular and total momentum
quantum numbers. Substituting Eq. (15) in Eq. (7), the OBDM can be written as:

pr0)=3 PP Y ¥ QoY @, ) (16)
qf m
where the radial part of the OBDM is:

p(qu) r r) = i (Df(qu) (r q)f(qu) (). 17)

It is known [19] that the overlap functions associated with the bound states of the
(A — 1)- and (A + 1)-nucleon systems are eigenstates of a single-particle Schrédinger equa-
tion in which the mass operator plays the role of a potential. Due to the finite range of the
mass operator, the asymptotic behaviour of the radial part of the neutron overlap functions
for bound states v (labeled by v =0, 1, ... with increasing energy) of the (A — 1)-nucleon
system is given by [17,18,37]:

9 (1) - W exp (- k Py, (18)

where



16 Antonov A.N. et al. The Hole Spectral Function

@ _ 1 (@) _ g Oy1/2
KD =2 2m ESD - ED)V2. (19)

For protons some mathematical complications arise due to an additional long-range part
originating from the Coulomb interaction [18], though everything from the neutron case
remains valid. It is assumed in [37] that Eq. (18) is also valid for the overlap functions
corresponding to the (A — 1) continuum.

The asymptotic form of the overlap functions (Eqs. (18) and (19)) determines the
asymptotic behaviour of the radial part of the OBDM [37]. Since higher excited states have
faster decay, at large values of ¥ = a — o one gets:

P4 (r, a) > & (1) [P exp (- Ky a. (20)
The normalization coefficient Co("”) can be obtained from the asymptotic form of the dia-
gonal part of the radial OBDM:
p (a, a) » IC A exp (- 2FPay o, 1)
By means of Egs. (20) and (21) one can derive the lowest bound state overlap function

0P (r, a)

oW (= — — 22)
0 Co(qll) exp (- kf)ql])a)/ a
as well as the separation energy
2
() — 42 1(qlh)
g =W ki / 2mq (23)
and the spectroscopic factor
S O(QU) = (po(qu)' o O(qlf) ). (24)

As shown in [37], the overlap functions for all bound states of the (A — 1)-nucleon
system can be constructed from the OBDM repeating the above procedure. For instance, the

overlap function for the next bound(slt te is: @l (el
P (r, &) - &P (1) B (@)

Cl(qu) exp (_ k(lqu)a)/a ) (25)

(D‘(‘llﬁ (r =

In the case of the continuum contributions to the OBDM one can calculate the parti-
cular sum over the scattering channels c: 2 [<I>C(ql") (r, E) CC(E)], but not the ow}erlap func-

c
tion for each channel [37].

The method for calculating of the hole spectral function in the discrete part of the
spectrum (for non-degenerate states v):

STk K, E) =Y, 9. (K)o, Y, (Do, ){9,® )8 E+E,-EY (26)
ab v
from a given theoretical correlation method, consists in the following procedure:

1) By diagonalizing the one-body density matrix of the A-particle system ground state
one obtains the natural orbitals {(pa (k)} (e.g., as in [30—35,16]);
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2) The bound-state overlap functions @, and separation energies g, are calculated on

the basis of the one-body density matrix following the approximate method described above
(Egs.(20)—(25)).

3) The amplitudes of the contribution of the natural orbital a to the overlap function
(@@, ) are calculated and the results substituted in Eq.(26).

It can be seen from Eqs.(1) and (5) that the energy integral of the hole spectral function
(1) defines the one-body density matrix in the momentum representation
Ep
[ aEs @ %, By =p (&, ),

— oo

where EF' is a negative quantity whose absolute value is equal to the separation energy of

27

the A-nucleon system [19]. :
We emphasize that the method described above enables one to obtain the hole spectral
function in the discrete part of the spectrtum (i.e., the integrand of the left-hand side of

Eq.(27) in the energy interval between E AO -E A(i-z and EF' ) on the basis of the one-body

density matrix calculated in a given correlation method. The knowledge of p (k, k) can
.give some information on the remaining part of the integrand in the left-hand side of
Eq.(27), namely the hole spectral function in the continuum part of the spectrum in the

energy interval between — o and E AO -E Ao—z'

In this paper we suggest a new theoretical method to obtain the hole spectral function
in the discrete part of the spectrum. The method is based on the natural orbital Tepre-
sentation in nuclear theory and uses essentially both the natural orbitals and overlap func-
tions as well as their relationship with the OBDM. Thus the theoretical point of the method
consists in the possibility of using the OBDM which is related to the properties of the
A-nucleon system to calculate the hole spectral function which determines the cross-section
of the nucleon removal processes and gives information on the structure of the (A-1)-
nucleon system. The applications of the method can serve also as a test of the predictions
of the correlated methods concerning the OBDM of the correlated ground state of the
A-nucleon system.

Our program to apply the suggested method includes two stages: i) calculations of
overlap functions on the basis of realistic OBDM from a given correlation method and
studies of their properties, and ii) calculations of hole spectral functions in the discrete part
of the spectrum and comparison with available experimental data. The results from the
fulfilment of this program will be given elsewhere.
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